

ABN: 55 010 264 230

28 August 2006

Laboratory Acoustical Testing of Wall System containing Expanded Polystyrene Foam

Test Reference: GC/06/5809.tst

Test Objectives:

- (a) Measurement of airborne Sound Reduction Indices (R) of sample wall system in accordance with AS1191-2002 Acoustics Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Elements.
- (b) Determination of Weighted Sound Reduction Indices (R_w) and Spectrum Adaption Terms (C_{tr}) in accordance with AS/NZS ISO 717.1:2004: Acoustics Rating of sound insulation in buildings and of building elements Airborne sound insulation.

Client: NRG Greenboard

PO Box 2129

Burleigh MDC Qld 4220

Attention: Scott Lehn

Test Date: 23rd August 2006

Test Location Acran Acoustic Testing laboratory

Cnr. Fulcrum & Bandara Streets

Richlands, Brisbane Australia 4077

Description of Test

Specimens:

Side 1: 6mm concrete render applied to 60mm thick expanded

polystyrene foam. The polystyrene applied with sheet

lengths vertical.

Framing: 90mm timber studs at 450mm centres

Side 2: 10mm Plasterboard applied with sheet lengths vertical.

Joints not set, some visible gaps up to 8mm wide. Edges caulked with expanding polyurethane foam.

Description of Test Facilities:

The tests were carried out in a purpose-designed transmission loss suite, comprising two adjoining reverberant rooms, designed in accordance with AS1191-1985.

Room construction: Solid concrete; independent construction for

source and receiving rooms with separate

foundations.

Room shape: Rectangular parallelepiped for both rooms;

aspect ratios 1.6:1.3:1 for both rooms.

Room volume: Source room 100m³; receiving room 170m³.

Average Absorption Coefficient: less than 0.06 at all frequencies.

Diffusers: Receiving room diffuser area 30.7m² compared

with largest surface (floor/ceiling) of 40m²; ratio

0.75.

Test Aperture: 3.16m x 3.16m (Nom). In this instance, craft

wood jamb linings were fitted to the test aperture. These reduced the effective aperture

area to 9.98m².

Instrumentation:

- Precision sound level meter, Rion NA-27 (S/N 00380650),
- Acoustical calibrator, Bruel & Kjaer Type 4231 S/N 1897734,
- Sound source, custom made pink noise generator, 150W power amplifier and a stereo two-way loudspeaker system.

Test Procedures:

Sound Source and location:

Broad band pink noise located in the rear trihedral corners of the source room.

Space and time average:

- Continuous moving path
- repeated three times
- path length approx 15m
- averaging time 120 sec.

Equivalent Absorption:

Was determined by reverberation time measurement using the built-in software within the Rion NA-27 sound level meter. The sound source was used to excite the room. Two source locations were used each with three microphone locations to comply with the Code.

Measurement Precision:

Each measurement was repeated three times. Repeatability was better than 1dB in every frequency band.

Test Results:

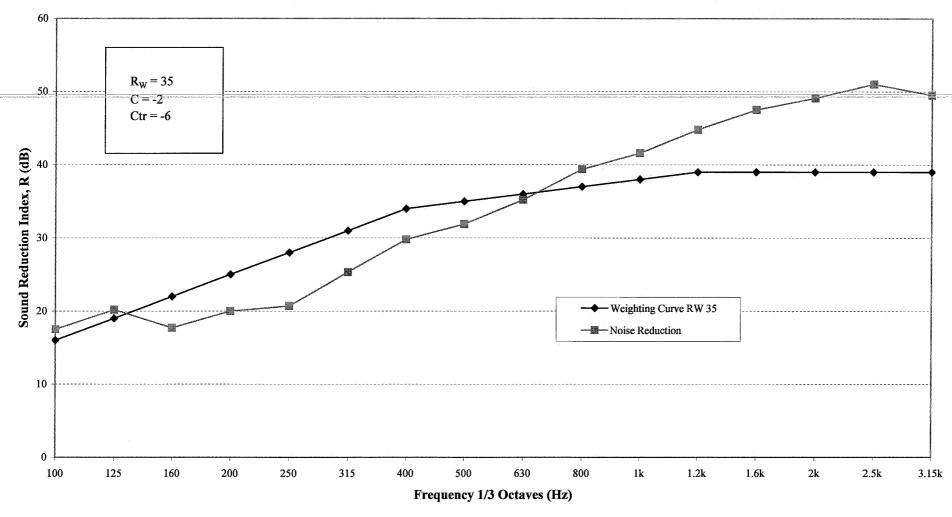
The test results are appended with a summary provided in Table 1 and complete 1/3 Octave data provided in Table 2.

GC/06/5809.Tst

Table 1: Summary of Test Results

Table 11 Summary of Test Response									
	Description	Acoustical Performance							
Side 1:	6mm concrete render applied to 60mm thick expanded								
	polystyrene foam. The polystyrene applied with sheet lengths								
	vertical.								
Framing:	90mm timber studs at 450mm centres	R _W 35, C _{tr} -6							
Side 2:	10mm Plasterboard applied with sheet lengths vertical. Vertical	Kw 33, C _{tr} -0							
	joints not set, some visible gaps up to 8mm wide. Edges								
	caulked with expanding polyurethane foam.								

Table 2 – 1/3 Octave Sound Reduction Indicies


	Frequency in 1/3 rd Octave Bands															
	100	125	160	200	250	315	400	500	630	800	1k	1.2k	1.6k	2k	2.5k	3.15k
R (dB)	17.5	20.2	17.7	20.0	20.7	25.3	29.8	31.9	35.2	39.4	41.6	44.8	47.5	49.1	51.0	49.5

Glen Copelin

Ron Rumble Pty Ltd

August 2006

 $Weighted \ Sound \ Reduction \ Index \ (R_W)$ 6mm Render, 60mm ESP on 90mm timber studs at 450mm centres, with 10mm plasterboard (Plasterboard joints not set, edges cauled with expandable polyurathane foam)

